Inside Broker

How Broker Leverages the
C++ Actor Framework (CAF)

Dominik Charousset

INET RG, Department of Computer Science
Hamburg University of Applied Sciences

Bro4Pros, February 2017

Hochschule fir Angewandte

Wissenschaften Hamburg
Hamburg University of Applied Sciences I

W
hat was Broker
again?

Problem at Hand

Bro A

State Updates
Events
Logs

User
App.

Bro B

Traditional Approach

Child Child
BroA <« > — > < > BroB
Process Process
Events
i
libbroccoli

Image source: Robin Sommer, BroCon 2015

Traditional Issues

* Persistency issues
* Possible race conditions with &synchronized

 |imited control over data flow

Bro A

Broker Approach

Broker

< y y > Broker Bro B
\ 4
Broker
C
Application C++
Python

Image source: Robin Sommer, BroCon 2015

Broker Benefits

* GGrant unified access to Bro events
* Empower users to manage state

* Provide a global, persistent key/value store

How does CAF relate
to Bro?

Broker in Context

Bro: monitor the network

Broker: distribute network insights

- -~
- ~ sr
Events -0 227y
-7 T s ///// |
-
s

s 7 7,/
’,’ _ /// // |
- 7,7 // |
P 7 7 /

P 7 /// // |

- g 7/ / /
- _- P / / |
- Ve /1 |

// 7 / //
- s / / !
7 / / ,/ |

Broker's Goals

* Provide flexible pub/sub data distribution
* Enable distributed, deep detection

* Support data-intense algorithms on realtime events

10

Broker's Requirements

* Efficient communication layer
* EXxpressive data model

* Persistent storage

11

Fueling Broker

* Broker uses CAF to meet its requirements:
e Structure: endpoints & messages
 Communication: send & receive

* Network: connect peers & distribute data

12

CAF in a Nutshell

* Programming interface based on the actor model
* Configurable runtime for infrastructure software*

* Emphasis on reliabllity, efficiency & maintainability

*following def. in: Bjarne Stroustroup, Software Development
for Infrastructure, IEE Computer 45, 2012.

13

What is our vision for a
next-gen Bro?

Deep Detection

* Correlation in multi-hop processing pipelines
 Distribution with pub/sub data access

* Resilience through replicated data stores

15

Bro Cluster

Vision for a next-gen
Bro with CAF.

#1: agile rebalancing via

(__Frontend] { netcontrol & broker. }

#2: pub/sub & consensus
instead of shared state.

#3: fault-tolerance & failover
through snapshotting.

—» Packets
= Logs

<t--+ State

16

Leveraging CAF

* Bro has to grow with user demands
* Scaling up and out is key to meet future work loads

* CAF provides building blocks for a next-gen Bro

17

What is CAF, exactly?

Scalable Abstractions

Actors avoid race conditions by design
Unified APl for concurrency & distribution
Compose large systems from small components

Scale runtime from the loT up to HPC

Microcontrollers Servers Supercomputers

19

The Actor Model

Asynchronous message passing

Actor
No shared state (3\A (
FIFO mailbox 3/1

Divide & conquer work flow (

Hierarchical failure handling & propagation

20

Anatomy of an Actor

Actor

/ Processing

(Control Loop)

?

Dequeue
Message

!

Invoke
Behavior

&>

yes

O,

no

Storage (State)

Internal Variables

int count;
string foo;

Message Handlers (Behavior)

[=1(int x) {
count += Xx;

}

~

Communication

(via FIFO mailbox)

\

3

21

Address to an actor
(allows enqueueing of messages)

CAF's Architecture

7

(

777

" Actor System |

Z (5

[Actor System]

Distribution Layer

———————————————————————————————

i Process
| Actor
i Message

Network
CPU
GPGPU

Network

Cooperative

GPGPU

Middlleman

Schqduler

Wrapper

Socket API

Thread API

OpenCL

22

Communication Patterns

* CAF offers various messaging primitives:
* Asynchronous 'fire & forget’ messages
* Request/response messaging (with timeouts)
* Pub/sub-based group communication

* Streaming pipelines (soon-ish)

23

CAF Facts Sheet

Developed at INET research group
First commit: March 4, 2011
Active international community

> 40,000 lines of code (https://www.openhub.net/p/actor-framework)

24

https://www.openhub.net/p/actor-framework

What is next?

Streaming

¢ Streams as first-class citizen in CAF
* Priority-aware message processing

* Re-deployable actor pipelines with back pressure

20

Streaming Concept

data flows downstream

source

A

demand flows upstream

errors are propagated both ways

27

Streaming Bro Events

CAF Application

Critical real-
time data
import.

0100100001000
1010100110001
0011000100111
1010010000100
0101010011000
1001000100111
100010..

/

Best-
effort file
Imports.

0100100001000
1010100110001

1010010000100
s O sever () Parser () Worker

/

28

High-level Clustering

* Declarative API for deploying actors & pipelines
* Dynamic redeployment & -configuration

* Monitoring of running CAF applications

29

Debugging Support

* Debugging distributed applications is challenging
 CAF's logs can reproduce causal ordering

* Visualization helps devs understand their system,
e.qg., with ShiViz

logl.txt log2.txt log3.txt

Image source: https://bitbucket.org/bestchai/shiviz/wiki/Home

30

https://bitbucket.org/bestchai/shiviz/wiki/Home

ShiViz* Ul with CAF App.

ol INIT ; NAME = spawn_s
e erver ; LAZY = true ; HID
DEN = true
Log lines Motifs timestamp: 14797300326
. - . . component: caf
level: DEBUG
host: spawn_server
5 collapesd events class.: caf.scheduled
function: launch
file: scheduled ac
SPAWN ; ID = 1 ; ARGS = (actor config) °
SPAWN : ID = 2 : ARGS = (actor confia)
[}
INIT ; NAME config server ; LAZY tru
7 collapsed events °
SPAWN ; ID = 3 ; ARGS = (actor config)
14 collapsed events ®
SPAWN ; ID = 4 ; ARGS = (actor config)
[}

INIT ; NAME = printer actor ; LAZY = fal

3 collapsed events ° °

SPAWN ; ID = 5 ; ARGS = (actor config)
3 collapsed events ® o
SPAWN ; ID = 6 ; ARGS = (actor config)

o]

INIT ; NAME = scoped actor ; LAZY = fals

* see: https://bestchai.bitbucket.io/shiviz/
31

https://bestchai.bitbucket.io/shiviz/

Tracing

* Lightweight monitoring of data flows
* Captures causal and temporal ordering of events

* Recording (debugging) or sampling (monitoring)

32

Tracing: Example

Inject Annotated Request

(N4, N5, N6, N2, N1)

N7
— -
(N4, N5)
IIIEIII
(N4, N5, N6)

33

Tracing: Visualization

Path in the system Causal and temporal relationship
User
_____________ : (time) >
Request
Frontend B J, 7 Request - T
_____________ —1 rpcT
\i

rpc2 —
Management 7 A
____________________ \’ rpc3

rpc4

Backend

Fig. mod. from: Benjamin Sigelman et al., Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure, Google Technical Report, 2010.

34

Thanks for Listening

® bro/broker

® actor-framework

YW actor framework

https://bro.github.io/bro/broker
https://github.com/actor-framework
https://twitter.com/actor_framework

